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ABSTRACT

This report summarizes efforts to characterize the measurement of
conductive mesh and smooth surfaces using proximity measurements for a
dielectric resonator. The resonator operates in the HEM;, mode and is
shown to have an evanescent field behavior in the vicinity of the
sample surface, raising some question to the validity of measurements
requiring near normal incidence on the material. in addition, the slow
radial field decay outside of the dielectric resonator validates the
sensitivity to the planar supporting structure and potential radiation
effects. Though these concerns become apparent along with the
sensitivity to the gap between the dielectric and the material surface,
the basic concept of the material measurement using dielectric
resonators has been verified for useful comparison of material surface
properties. The properties, particularly loss, may be obtained by
monitoring the resonant frequency along with the resonator quality
factor (Q), 3 dB bandwidth, or the midband transmission amplitude.

Comparison must be made to known materials to extract the desired data.
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

This report summarizes the research effort to evaluate the potential for using a dielectric
resonator in the vicinity of a planar, conducting, material sample to determine the loss properties
of the sample. This introduction and resultant conclusions summarize the extensive work
documented in the appendix and submitted as a thesis for the MS degree at Virginia Tech. The
thesis develops the theory for approximate analysis of dielectric resonators based on a review of a
variety of methods expounded in the literature. The technique of Itoh [4] provides useful results,
but is found to be a bit too approximate for the problem at hand. A full problem development
could have been pursued, but was not felt to be necessary for the justification goal of the report.
In order to obtain useful results, a middle-of-the-road approach was taken which addressed some
of the techniques suggested by Itoh and added a more complete description to the capped
terminations of the resonator. In particular, the consideration of bringing a planar material

within the proximity of a planar end of the resonator is included in the report.

1.2 BASIC APPROACH

To attack the problem at hand (see Fig. 2.1 of Appendix), the resonator was first
considered to be a dielectric waveguide. Thus, the properties of a circular dielectric waveguide
were developed for an infinite dielectric rod. The properties of the rod analysis were not fixed,

but were developed for use in an iterative process as would be required for the determination of
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the dielectric resonator properties, those of a truncated dielectric rod. Several classic cases were
considered in order to provide validation to the code. The validation simply involved the
determination of the fields and longitudinal propagation constant of the dielectric rod for different

modes as expected from the literature.

The next step in the development was the truncation of the dielectric rod to represent a
circular dielectric resonator. The ends of the resonator were modeled as simple connections to
open space. The boundary conditions at the ends were approximated by either the electric field -
or magnetic field mode dominance characteristic of hybrid dielectric waveguide modes. This
boundary condition was thus represented by a reflection coefficient which was iteratively added to
the dielectric rod waveguide delay to obtain a round-trip delay having a multiple of 360° phase
shift. The iterative process consisted of searching for the complex frequency at which the proper
phase shift occurred. In addition, the properties of the reflection coefficient magnitude and the
dielectric rod propagation loss directly impact on the imaginary part of the complex frequency
and thus the dielectric Q of the resonator. Thus the Q for a particular mode may be determined

and used in an estimate of the loss.

To obtain the material loss estimate, the reflection coefficient at the end of the resonator
adjacent to the planar sample was modified to include the sample energy absorption. Thus the
overall modification in the resonator Q was evaluated. Sample results for the analysis in the

presence of a lossy material sample is included in Section 3.5 of the appendix.

vi



CHAPTER 2

CONCLUSIONS

This report has summarized the potential for using a dielectric resonator in the vicinity of a
planar, conducting, material sample to determine the loss properties of the sample. The theory
for approximate analysis of dielectric resonators is reviewed, incorporating a variety of methods.
The technique of Itoh [4] provides the most straight forward approach to the problem, but was
found to be a bit too approximate for the problem at hand. Itoh’s approach was extended to
address a more complete description with a truncated circular resonator. An additional extension
included the ability to bring a planar material within the proximity of the planar end of the

resonator.

The resonator was first treated as an infinite dielectric waveguide. The properties of the
rod analysis were iteratively used in a program along with an estimate of the reflection properties
at the resonator ends to determine the basic complex frequency of the dielectric resonator, the
imaginary part of the resonate frequency directly providing an estimate of the resonator Q,
quality factor. The ends of the resonator were initially modeled as simple connections to open
space. The boundary conditions at the ends were approximated by either the electric field or
magnetic field mode dominance characteristic of hybrid dielectric waveguide modes. This
boundary condition was thus represented by a reflection coefficient which was iteratively added to
the dielectric rod waveguide delay to obtain a multiple of 360° phase shift. The iterative process
consisted of searching for the complex frequency at which the proper phase shift occurred. The
imaginary part of the complex frequency was used to determine the resonator Q and thus the

resonator loss.

vii



The properties of planar materials adjacent to the resonator end were used to evaluate
the effects of the resonator loss estimate by modifying the reflection coefficient at the end of the
resonator adjacent to the planar sample to include the sample energy absorption. Thus the
overall modification in the resonator Q was evaluated. Sample results for the analysis in the
presence of a lossy material sample indicate a change in the resonator frequency and Q, thus
providing support for the use of the corresponding resonator transmission amplitude for
comparison of material properties of materials set adjacent to the resonator end. It is important
to recognize that the only information which is directly available is a comparison with other
samples. Thus, several known materials must be used for comparison in order to calibrate the
effective measurements used in the system. The data is found to be very sensitive to outside
influences and sample placement distances. Extreme care must be taken in the placement and
surrounding environment of the measurement system in order to obtain repeatable and useful
results.  If adequate precautions are taken, the results obtained from several material
measurements will provide useful information on the quality of a mesh conductor used for the

reflector of a space deployable antenna system.
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DIELECTRIC RESONATOR IN THE PRESENCE
OF A LOSSY CONDUCTOR
by
Scott B. Johnston
Dr. William A. Davis, Chairman
Electrical Engineering

(ABSTRACT)

This thesis develops a method for obtaining the complex resonant frequency of a post dielectric
resonator in the presence of a lossy conductor. A full field analysis is performed on an infinite
dielectric rod from which the complex propagation constant and modal solutions are found.
Using a single dominant mode (HEM,,), the boundary conditions at the end of the resonator are
enforced, to obtain a complex reflection coefficient. Using the propagation constant from the
infinite dielectric rod and the reflection coefficient derived from considering the dielectric-air
interface at the resonator ends, a two dimensional search is performed to find the complex
frequency for which the gain/phase criterion of the resonator is satisfied. In the final step,
boundary conditions are enforced for a lossy conductor at a distance Az from the dielectric which
yields the objective — the complex resonate frequency of a post dielectric in close proximity of a

lossy conductor.
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Chapter 1

Introduction

It was recognized in the 1960’s that high-Q dielectrics held high promise in the area of
microwave electronics. The advent of temperature-stable materials such as barium tetratitanate,
allowed dielectrics to be used in microwave systems such as oscillators, filter banks, and
multiplexers. Following the temperature-stability breakthrough numerous papers have been
written on both material aspects of dielectrics and the electro-magnetic field models of dielectric
resonators. Various scientists have devised schemes using high-Q post dielectric resonators
between two conductive shields to measure physical properties such as dielectric constant and
loss tangent of the dielectric at frequencies of interest [1;3]. The modeling work in this thesis
will reverse the scheme by using a fully characterized dielectric to determine the electrical

conductivity of a single conductor in close proximity of the post dielectric resonator.

The work of this thesis is similar to work by other authors [4;-;7], in the attempt to
derive the field distribution and to determine the resonant frequency of the post dielectric
resonator. Itoh (4], considering the TE), mode, makes several approximations about the field
configuration that yield a simple numeric method for determining the fields in and around the
post dielectric and the resulting resonant frequency. Due to the similarity of basic principles of
Itoh’s work and this thesis, Chapter 2 reviews his paper, "New Method for Computing the
Resonant Frequencies of Dielectric Resonators” [Itoh,4]. In another paper, Marek Jaworski (7]

achieves similar resuits to Itoh's by applying a Green's function in an



elegant, but rigorous mathematical model of the dielectric resonator. While Itoh’s and Jaworski's
works address general characteristics of the dielectric resonator, this thesis considers a very
specific problem: the complex resonant frequency of a post dielectric resonator of specific profile

in close proximity of a lossy conductor.

The goals of this thesis are threefold: first, derive the electro-magnetic fields associated
with the specific experimental setup to facilitate a better understanding of how the evanescent
fields couple to the surrounding experimental setup; second, develop a method of calculating the
complex resonant frequency; and third, develop computer models to aid in the determination of

the conductivity of the material being used as the ground plate.

Chapter 2 presents background information pertinent to this work, introduces the
resonator system under study, and outlines the method of development employed to achieve the
three goals of this thesis. Chapier 3 develops the resonator system in th- four following stages:
first, the field configuration for the infinite dielectric waveguide is derived; second, the fields and
the resonant frequency for a free space resonator are determined; third, the fields and resonant
frequency for the resonator in the presence of a perfect conductor are derived; and finally, the
fields and resonant frequency for the resonator in the presence of a lossy conductor are derived.

The final chapter provides conclusions and recommendations.



Chapter 2

Background

2.1 Introduction of the Experiment

The experimental setup under consideration is shown in Fig. 2.1a. The experiment has
been devised to determine the electrical conductivity of the mesh used to shield the dielectric
from above. The measurable parameters of the experiment are the S parameters of the system.
Of interest in this experiment is the one port parameter s, which is return loss and the two
port parameter s,, which is insertion loss. At a resonant frequency, power will be coupled from
one probe to the other. Resonance will be noted on the network analyzer when the return loss
increases and the insertion loss decreases. The two probes of the network analyzer are
positioned to couple lightly into the dielectric but not to couple significantly to each other (9].

The post dielectric rod is supported by rexolyte from below and the conducting material
of interest in close proximity above. The rexolyte has a relative permittivity approximately
equal to one and the thickness is assumed to be large compared to the penetration of the
evanescent fields. The four conductor supports are far enough away from the dielectric not to
couple into the radial evanescent fields. The validity of these assumptions will be verified in

Section 3.3.

Section 3.3 will show that the placement of the conductor should be within 0.5 cm of the
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dielectric. One method of quantifying the mesh conductivity involves using several known
conductors as the ground plate. The mesh pressed directly against the dielectric provides for
easier analysis, but as will be seen in Section 3.4, is not necessary. What is necessary is a
mechanism to provide a repeatable way to alternate conductors while maintaining the same air
gap distance between the conductor and the dielectric. If the measurement for one conductor is
made with zero air gap, the measurements for all other conductors should also be made with zero
air gap.

As stated in Chapter 1, the first goal of this thesis is to derive the fields in and around
the dielectric of Fig. 2.1a. The complexity of the derivation is greatly simplified by making the
following assumptions:

1) infinite conductor

2) each region source free

3) conductor and dielectric system in free space.
These assumptions reduce the system under consideration to that of Figure 2.1b. Although the
system of Fig. 2.1b is simpler than the experimental setup, the configuration of the system
remains non-separable. In contrast to the infinite cylindrical metal waveguides, boundary
conditions of the resonator must be satisfied at the cylindrical sides and at both ends. The
problem of the non-separable geometry will be addressed in Chapter 3.

Before reviewing the applicable literature, notation used in the remainder of the thesis is

defined as follows:

S - complex resonant frequency given by S = {+jw

@ =resonant frequency

{ = damping factor

E, = complex propagation constant given byk =8 - ja
o = attenuation constant

&, = free space propagation constant

€ = complex relative permittivity of the dielectric

o = conductivity of the conductor



2.2 Literature Review

In the paper "New Methods for Computing the Resonant Frequencies of Dielectric
Resonator” (4], Itoh makes several assumptions about the TE,, electromagnetic fields of the post
dielectric resonator. Itoh’s post dielectric resonator is shown in Fig. 2.2a. The assumptions

made in Itoh’s paper are:

1) majority of stored energy is in dielectric

2) fields decay exponentially at the ends

3) small amount of energy in fringe area, regions 5 and 8 of Fig. 2.2b.
4) lossless dielectric (¢, = ¢, — j0)

5) lossless conductor (0—o0) at z= — ¢

Itoh’s assumptions of a perfect dielectric and a perfect conductor result in a resonant frequency
that is purely real. Using these assumptions, it is sufficient to match the fields that are tangent

to the boundaries. Itoh assumes the fields in the four regions for an unknown z, are

A, sinB(z-2,)1,(hp) region 1 (2.1a)
AsinB(2-2))K, (pp) region 2 (2.1b)
H, =
‘ Agexpl-y(z-L)I,(hp) region 3 (2.1¢)
A sinhi(z+1)],(ho) region { (2.1d)
where

" PRI
= i
k= w,JE



Figure 2.20 Hoh's dielectric resonator

Figure 2.2b Six regions of the resonator
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The relative dielectric constant is ¢,; and the thickness of the material below the resonator
is t. The fields in the regions five and six are assumed to be zero, or at least negligible. The
remaining two components E, and H, are uniquely specified once H, is determined and are
derived in terms of Hj in Appendix A. Matching tangential components at the dielectric

boundary, performed in appendix B, leaves two eigenvalue equations

klp"o(k\p") jk’)pkz(j")pc)

—To(kxpd) = K, (%,3) (2.2a)
8L = tan"(%) + tau"(% coth(t) . (2.2b)

For the dielectric resonating in free space, t—o, 2.2b becomes
ptang) =7 (2.2¢)

Given a free space dielectric with height of L = 0.508 cm, radius of a=0.63 cm, and
¢, =40, pumerical methods were used to solve the coupled Eq. 2.2a and 2.2¢ resulting in a

resonant frequency of

f.=4.36 Ghz .

Itoh’s work results in a quick method for determining the electromagnetic fields and
resonant frequency of TEg, modes. Itoh’s method is not mathematically rigorous; however, his
method for determining fields and resonant frequency is suitable for perturbation studies.
Possible perturbations include distance between ground plane and dielectric, changes in the
dielectric constant, and changes in the physical profile of the dielectric. What the model does

‘ not provide is a way to calculate hybrid modes or to make provisions for a conductoer with finite

conductivity. Methods addressing these two anomalies will be developed in Chapter 3.




2.3 PMC Dielectric Resonator

In this section the free space resonator, shown in Fig. 2.3a, is analyzed using the
assumptions of a perfect magnetic conductor, PMC. This assumption has been a celebrated
method used to determine electromagnetic fields, the propagation constant of dielectric
waveguides, and the resonant frequency of dielectric resonators (10]. The PMC model assumes
that the tangential magnetic fields are zero at the dielectric-air boundary. This simplifying
assumption produces numerical solutions with errors as high as 26%. For example, it will be
shown by a more rigorous method used in Section 2.2 and Chapter 3 that the PMC method gives
a resonant frequency that is 20% lower than the actual TEy,y resonant frequency. The PMC
method provides however a convenient "back of the envelope” procedure for the quick
determination of propagation constant and resonant frequency.

The PMC derivation of TEmP modes begins with the solution of the Helmholtz’s wave
equation in a non-magnetic medium. The electric potentials that satisfy Helmholta's equation in

region one and region two (Fig. 2.3b) are given by

me = A B: (&,,0)(Cy cos(kz) + D, sin(k;z)) o p<a (23)
and
W? = BB, (k) p)(Cy cos(kyz) + Dg sin(k;z)) Pl , p>a (2.4)

where B:" denotes a general Bessel function of the nth order. The subscript m denotes the mth

solution for a particular n. The separation equation for the two regions are

kf = Efp + kf = uf TR (2.5)
and
R 29)
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The TE fields are given by the following relationships (10}:

.10 g8 _ .4 8% 4e
E,= 7 55 ¥ (2.7a) Hy=2l 05 ¥ (2.7d)
D ¢B _ -1 8% 4k
Es=3p ¥ (2.Tb) Hy = ;.7,{7 3¢0: ¥ (2.7e)
E,= 0 (2.7¢) :;;»_I _a‘_z + e (2.76)

In region one, which is the dielectric, the fields must have finite values as p approaches
zero. To fulfill this criterion the general Bessel function must be an ordinary Bessel function of
the 1st kind of order n. The electric fields in the dielectric are found by operating on Eq. 2.3

according to Eq. 2.7 which results in

E'= %’-'Jn(llpp) (Cy cos(kyz) + Dy nin(k,z)) P (2.8a)

EL = by, Ta(by,p) (Cy cos(lyz) + Dy sin(k;z)) g (2.8b)

El=0 (2.8¢)

Hl ) "’k' (k‘pp) (C, sin(k,z) - Dy cos(kz)) P (2.8d)

H} = U;;';; Io(ky,9) (Cy sin(kyz) ~ Dy cos(k;z)) o (2.8¢)
i |

H = “’ - In(kyp) (Cy cos(byz) + Dy sin(k1)) o, (2.8f)

with the prime denoting the derivative with respect to the argument.

In region two, which is free space, all fields must decay to zero as p tends towards
infinity. Thus, in region two the Bessel function must be a modified Hankel function with an
argument of jky p. The modified Hankel function with argument jk; p represents an outward

decaying wave provided that the argument is purely real. The fields in region two are found by
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operating on Eq. 2.4 according to Eq. 2.7 which leaves

E: = %’—.Kn(jk.)pp) (Cz cos(k,z) + Dz u'n(k:z))c"w

o

7 :jbjpk'n(jkzpp) (Cz cos(kz) + D, n'n(k‘z))eiu

7
i

0
H = %‘f Ko(iky 0) (Cy sin(kyz) + Dy cosfk 2))d™
H: = “_’%‘%7’ Kp(ky,0) (Cy sin(kyz) ~ Dy coa(k,z))JM
and
H = i_ﬁ% Kp(iks,0) (Cy cor(kyz) + Dy sin(k;2))0™ .
The boundary condition as defined by the PMC model, at p = @, 2= 0 and :=h are
Hylp=a)=Hylp=a) =0,
Hi(1=0)=Hy(:=0) =0,
and
Hi(: =h)=Hj(s=h) =0
Enforcing boundary condition (2.10a) gives
‘-'-T';‘é" Tn(ky8) (Cy cos(kyz) + Dy win(kyz)) o¢ hi _ g
which simpliﬁes to

Jnﬂlp‘) =0

(2.9a)

(2.9b)

(2.9¢)

(2.9d)

(2.9¢)

(2.9f)

(2.10a)

(2.10b)

(2.10¢)
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Define , z,,, = k; o & the mth root of the Ordinary Bessel function Jn to give a solution

b= ' (2.11)

I3

Enforcing boundary conditions, (2.10b) and (2.10c) give
and

D, nin(kh)= 0. (2.12)
To obtain a non-trivial solution it is required that

sin(kh) = 0. , (2.13)

Eq. 2.13 is satisfied if and only if

kh=px
or
k= Bhf p=0,12 . (2.14)

Substituting equations 2.11 and 2.14 into the separation equation (2.5) the resonant
frequency is derived as
_ 2, 2 _ 2
kI = kl + klp = Wy Bo%le

(354 Zoeres = (%,I)"' + (2my?

W%y = s OB + B (2.5)

Where the indices n and p may be any non-negative integer and m may be any positive integer.

A similar procedure is undertaken to find the resonant frequency of the TM, ., modes (2.16).
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Cimp' = et VORI + B (2.16)

The symbol 2, is the argument for the zero’s of the derivatives of the Bessel function and the
indices n and p may be non-negative and m any non-negative integer.

The dielectric used in NASA's experiment has a radius of 0.63 cm, a height of 0.51 cm,
and a dielectric constant of 40. Using these dimensions, the resonant frequency and propagation

constant have been determined for several modes.

mode f, (Ghz) L (/m)
TEq10 2.88 0

TE\ 10 4.59 0

TEy ), 6.53 615
™y, 5.14 615
TMy,, 6.53 615

2.4 Complete Solution

Before considering the details of the derivation and the approximation that allow for an
accurate solution with finite time and resources, insight may be obtained by considering the full
scale problem without approximation. The system consists of a lossy dielectric resonator having
an excited hybrid mode operating in close proximity to a lossy conductor. Fig. 2.4a illustrates
the difficulty. In contrast to an infinite waveguide structure, the dielectric resonator system has
a non-separable geometry. The first step of the analysis is to break the system into ten regions
as depicted in Figure 2.4b. The Helmholta’s equation is solved in each of the ten regions yielding
ten sets of scaler potentials ¥ . Then, the fields must be matched at all interfaces. An infinite

set of hybrid electro-magnetic fields are found for each region.
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Region one of the dielectric resonator has an infinite number of modes, although only one or ‘
a few may dominate. As in the other regions, all but a few of the modes represent evanescent
modes. Evanescent modes that radiate into free space represent stored energy and do not effect
loss in the system. Evanescent modes that are terminated by a lossy conductor may however
have power transfer thus representing a loss mechanism.
To complete the solution, mode-matching techniques are applied at the interface
between all regions. The boundary conditions state that the tangential components must be
continuous at the region interfaces except at the source interface. As an example, consider

region 5.

1) Fields must decay to zero as z—o0
2) Fields must decay to zero as p—0

and

3) Tangential cormponents must be continuous with the tangential components

of region 6 and 7.

The sources may be treated in phase and out of phase to determine the transfer
characteristics of the resonator. As an alternate procedure, the complex resonant frequency of a
source free region may be determined and the Q of the resonator computed by the ratio of the
real to the imaginary frequency terms. The mode-matching procedure outlined above does not
guarantee resonance for the source-free problem, rather the procedure must be repeated until a
frequency is found for which the fields satisfy all of the equations. This might be stated in terms
of the bounce path between the resonator ends providing a gain, with the requirement that the
loop gain be of unity magnitude and a net phase change of 0. The loop gain criteria for
resonance will be expanded in Chapter 3. It must be noted that the problem outlined above,
although extremely rigorous, is still only an approximation to the real world pr.oblem. Two
assumptions which delineate this point are the infinite ground plate and the point source. In

order to work the problem in a finite amount of time, additional assumptions are necessary.
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Each assumption which facilitates easier mathematics must also be justified. In the following
development the justification will be that the assumptions deviate slightly from the physical

problem and introduce negligible error.

2.5 Outline of the Development

To facilitate a better understanding of the operation of the dielectric resonator system, a
five-step "ground-up” development will be employed. The five steps of the development are the

analysis of the

1) infinite dielectric rod

2) TE,, and TM,, resonator

3) HEM,, mode resonator

4) dielectric resonator in the presence of a perfect conductor and

5) dielectric resonator in the presence of a lossy conductor.

In step 1 a full field analysis of the infinite dielectric rod (IDR) will yield a method for
determining the propagation constant k, for guided modes. As a result of the derivation, given a
complex frequency, radius a, and a complex permittivity ¢4, the complex propagation constant
may be obtained. Using results of step 1, step 2 derives a formula for the complex reflection
coefficient at the resonator’s ends. Using the reflection coefficient the criterion for resonance will
be forcgd to yield a complex resonant frequency for the cases of TEy, and TM,,. Step 3 will use
similar techniques of step 2 to determine the complex resonant frequency of a dielectric operating
in free space at the lowest order mode hybrid HEM,,. Step 4 introduces a perfect conductor to
the dielectric system operating with HEM,,. In the final step, analysis of a resonator system

with a lossy conductor will yield a formula for an equivalent complex reflection coefficient.
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Once the complex reflection coefficient is calculated, steps 2-5, the complex resonant
frequency of the dielectric resonator can be computed. The method for computing the complex
resonant frequency is based on loop gain and phase criteria. Similar to electric oscillator and
optical laser cavities requirements for resonance, the loop gain of the system must have a gain of
1 and a change in phase of zero. Specifically for the dielectric resonator, loop gain and phase
refer to the electro-magnetic fields, illustrated in Fig. 2.5a. The formula that enforces the

criteria of gain and phase is given by

-jzle _

) " 1.0. (2.17)

A two-dimensional search will be used to determine the complex frequency, S, that

minimizes the error of Eq. 2.17. Each complex frequency yields a propagation constant. Given

the propagation constant the error function is given by

124 L . (2.18)

error= | 1.0 - Tl e

The two dimensional search is depicted in Fig. 2.5b. Once the complex frequency, S = < + x,,

is determined, the unloaded quality factor of the resonant system is given by

Q = ‘%! : (2.19)

Programs have been written to simulate the operation of the dielectric resonator system
with one of three modes exited under different physical conditions. Conditions of special interest
are the perturbation of the dielectric loss mechanism ¢”, the air gap distance between the
dielectric and the conductor, and the conductivity of the ground plate. As a result of the work
in Chapter 3, given the physical dimensions of the resonator system, the output of the simulation

will be the complex propagation constant &, complex reflection coefficient, and complex resonant

frequency.
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Chapter 3

Analytical Development

3.1 Infinite Dielectric Rod

The goals of the first stage of development are two: derive, without approximation, the
electro-magnetic fields of the infinite dielectric rod and devise a method for determining the
complex propagation constant k. The cylindrical dielectric waveguide under consideration is
shown in Figure 3.1. Region 1 is the Infinite Dielectric Rod (IDR) and region 2 is the infinite
space surrounding the rod. The derivation begins by using two sets of electromagnetic potentials
that satisfy Helmholtz's scaler equation in each of the two regions. Restricting the fields to finite
values, the electro-magnetic potentials are used to derive the hybrid fields for each of the two
regions. Applying the dielectric-dielectric boundary condition, that tangential fields must be
continuous across the boundary, results in a system of 4 equations and 5 unknowns. Four of the
unknowns are field coefficients, A-D, and the fifth unknown is the propagation constant k. The
last two tasks of the section will be to develop a method for solving k, and solving the field
coefficients A, B and C relative to coefficient D.

The derivation begins with the magnetic and electric potentials that satisfy Helmbholtz's

equation in region 1 and 2. These potentials may be written in general form as

o= ABR(kyp) &™ et (3.1a)
¢ =B (h) e (3.1b)
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o) = CBY () o ' (3.1¢)
o = DR lp) S (3.14)

The notation B’,(‘ denotes a general Bessel function of the nth order. The subscript m denotes
the mth root of kp solution for a particular n. To be explicit the propagation constant
representing mode nm in region 1 would be written knm. To satisfy boundary conditions at the
dielectric-dielectric interface for all 3, it is required that k,,=ky,. Thus, the propagation
constant will be shortened to k.

A direct result of solving the wave equation is the separation equation. The separation

equations for the two regions are given by

2_ ;2 _ ;2 2_ 2
by = kocr - klp + k= W&l (3-2‘)
and

2 _,2_ .2 2 ._ 2

b=k = L)p + k= WoloEs (3.2b)

For cylindrical waveguides, modes that exhibit angular variation cannot be pure TE or TM
nodes. The modes that exhibit angular variation in the cylindrical dielectric are (HEM) hybrid,
commonly referred to as cither HE or EH modes. HE is used when TE (H) modes are
predominant and EH (E) when TM modes are predominant. For dielectric waveguides the
dominant mode is HEM,, followed by TEq;, HEM;,, and TMg, [10]. TE and TM modes are
special cases, n=0, of the infinite hybrid set. Thus, consideration of the hybrid set takes care of
all possible modes. The hybrid modes can be written as a superposition of properly operated on

potentials wE and ¥M. The hybrid electric and magnetic fields are given by

B =L 2N L2 (3 R Lol

€ z
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_ o2 M i) = . 2gM ‘ 8
B =gkp 35t 5P 0% Ho= 5 * s ¥ (029
12 ‘ i 3:‘2 ' (339

In region 1, the fields must have a finite value as p approaches zero. Thus, the general
Besagl function is an ordinary Bessel function of the first kind order n. The electric fields in

region 1 are thus given as

-k : o
E =4 w—c"::: L'k,e) + B S (k)] I by (3.42)
= [A ‘:’J_'"_d% Jalbyp) + B, (khp) ] ALY (3.4b)
2
B = A ’k“’ Iy(ky,0) e ok, (3.4¢)

where k -kz - kz.

The same method is applied to yield the magnetic field components of region one. Eq.

3.3 operating on 1.1 yield

= /A"' J(bp) + B G “’" (ki 0) ) e ok (3.44)

H; =[A b, jn(klpp) + B‘:’% "n(klp’)] ch.jk" (3.4¢)
2 .

H = B 22 ’t"‘ Jo(ky0) FLALLE (3.4f)

The dielectric of region two is free space with ¢, and p, and assumed to be infinite in
the p direction. All fields must be finite as p tends toward infinity. 'I'hu requires the general

Bessel function in region 2 to be a modified Hankel function with an argument of ji,,.



24

modified Hankel function with argument jkg, represents an outward decaying wave. The field

expansions are given as

B=[C JL"L)' K, (ib0) +D % K,.(J*apﬂ)le’"" ok (3.5a)
= (38 Ky (ikyyp) + Dlitap)Hs Gtagb)] I ikt (3.5b)
B = C e ’k”’ K, (k,0) @™ (3.5¢)

where l.fp = Lf - l:;8 . As before, the magnetic field components in region two become

= [C K (b)) +D Tt i (i p) | " ke (3:5d)

H = [C (k) Kalitie) Dy Ko iap) | 77 (350
2 .

H =D j__ Kp(iky,p) b (3.56)

The fields derived above represent an infinite pumber of possible field solutions. In
addition to the 3-dependence, the tangential components must be continuous at the dielectric-

dielectric boundary. These boundary conditions may be written as

1) H}(Fd.os‘tétﬂ.:):Hf(p=a.0S¢£h.:) (3.63)

2) E' (p=0,0< ¢ < 2 1)= B (p=0,0 < ¢ < 22) (3.6b)

$) Hy(p=0,0 < ¢ < 2 i)= H (p=0,0 < ¢ < ¥, 2) (3.6¢)
and

i) By (p=0,0< ¢ < 2 2)= B (p=0,0< ¢ < 2. 2) (3.6d)
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Substituting the field expansions into the boundary conditions, we obtain the following four

equations:

BE, Jh,e) = DY, Kik,e)
2 _ 2 .o
A klp Jn(klp“) - CCI’ “Jp Kn(J")p“)
Ak, (b ,0)+ BD):;% Ju(ky,8) = C by K (b ,0) + D,,—,’ol::i K,(%4,0)

and

-jn k

ok
AT b,e) + B oS (k,0) = CTed Kalibys) + Dby, K'yliky,0).

These four equations can be set equal to zero and written in matrix form

Z 0 x=0.

The quantity x is the eigenvector of the coefficients given by

and matrix Z__ is given by

(3.7a)

(3.75)

(3.7¢)

(3.7d)

(3.8)

(3.9)
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0 lp n(klpa) 0 'kngn(JL)p“)

1 (ky0) 0 ek K, (iky,0) 0

nk -in
A aihlh,e) b Kb GeKGh,e)

-3 k '
uJ':da n“lpa) klp"'l(klpa) t..),_:c't‘—aKn(jb)p‘) 'ijpIql(jk')p‘)

where the matrix elements are a function of t, The &, component for regions one and two are

given by
& et - k, (3.10a)
and
e
3 = -k . .
2 \[w Moo - by (3.10b)

‘The subscripts nm are added to emphasize that there are multiple solutions
corresponding to the nth harmonic in ¢ and mth root of the matrix equation. There are two
possible solution forms for eigensystem (3.8). The first trivial possibility is that the eigenvector
is equal to zero. The second possibility is a solution requiring the determinant of Z equal to zero.
Since 3.8 is a function of &, to have a non-trivial solution there must exist a particular &, that
forces the determinant of Z to zero. The technique used to find the particular complex
propagation constant k, is outlined below.

A direct search algorithm is used to find the & root by first searching the dominant

phase term for a minimum determinant and setting
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The method used to find B searches starting with 8, increments by A8, and ends at B, where

ﬁo = JUOHOCO

and

ﬂl = \j’wfpotoﬁ :

Any B outside this specified range will be imaginary, representing an evanescent wave. As Bis
incremented, the magnitude of the determinant Ly, denoted by |Z |, is calculated to
determine which 8 yields the minimum determinant magnitude. The results of this method is

shown in Fig. 3.2 for

freq = 3.54 Ghz

a= 0635 cm
and

¢ = 40— j0.04.

Ounce B, has been established, £, is set equal to E, = Bria and a second search is
undertaken to find the real part of the complex propagation constant. The real part of L is
incremented in search of the particular k that minimizes|Z _ |(Fig. 3.2b). Once the two
dimensional search is completed the propagation constant is given by
(3.11)

¢ =

+ = Benin ~ I0min-
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The results of the two dimensional search for this example provides the solution

. = 319.0 - j0.336 for the HEM,, mode.

The negative imaginary component implies attenuation of the forward propagating
waves. Having computed the propagation constant k,, the p component can be determined using

Equation 3.10. The p comnponents are

b, = 3440 - j0.00837

b, = -0.345 - j0.336.

Once £, is computed, it is insightful to determine the coefficients A, B, and C relative to
D. The coefficients are related to the magnitude of the field components and can be determined
to within a constant without having information about the source. With knowledge of the
source, a Green's function technique may be used to determine the four coefficients. For the
purpose of this paper, it is sufficient to calculate the coefficients A, B, and C relative to
coefficient D.

To determine the relative coefficients, matrix system (3.8) is written in the form

0 !12 (] fl P A 0
= . (3.12)
I ha hs B c 0
I fa hia s fas D 0

which has the form
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>y
il

Taking the LU decomposition of Z leaves the matrix in the form

o i i et 10 ]
In IY I /14 A 0
0 11 T3 T24 B 0
= (3.13)
0 0 fas I c 0
0 0 0 Tee D 0
L I R R
The last equation of the matrix system is
DA?(; =0, (3.14)

where Af“ ~ 0. Eq. 3.14 allows D to be assigned any value. The simple choice of D = 1 may be

used to obtain a 3x3 matrix in the form of

3¥ =y (3.15)
o ) X 1r 1 r
I /12 ha A -t
0 fa3 T2 B =| I (3.18)
0 0 Ja3 C T
L L J L B

where g is a constant, and the vector ¥ may found to yield A, B, C relative to D. Coding all the
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work outlined above allows the field components of equations 3.4 and 3.5 to be plotted versus p.
Using the dimensions and properties of the NASA experimeat, the 6 field components versus p
are plotted m Fig. 3.3 for the HEM,, mode. So that the electric and magnetic field strengths
can be compared, the fields are given in units of % Several observations can be made to
intuitively check the results including

1) tightly bound fields

2) continuity of tangential fields

3) discontinuity of the E, components by a factor of ¢,.

4) predominately TE (no £,)

The field pattern for HEM,, is shown in Figure 3.4. The knowledge of the field configuration for
the specific dimension of the experiment is essential in the further develdpment of the dielectric

resonator system.
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3.2 Resonator Method for TEm

As stated in Section 2.2, the mode that is dominant depends on the physical dimensiom
and properties of the dielectric. In addition, the ?xper'unental setup, such as the orientation of
the probes, plays an essential role in determining which modes are excited. One of the possible
low order modes that may be dominant is the TEq, mode. In this section, the complex
reflection coefficient will be derived for a free space dielectric resonator (Fig. 3.5) having a single
dominant TE, field configuration as in Section 2.2.

By considering both forward and reflected waves at the resonator end, z=%, the
expression for the reflection coefficient, '3, may be formulated. As outlined in Section 2.6, the
reflection coefficient will be used to iteratively solve for the dielgctﬁc': complex resonant
frequency. The derivation begins by using the results from the infinite dielectric rod of Sect.ién
3.1. The seroth order electro-magnetic fields are obtained by setting n =0. In addition, 4 and

C are set equal to zero which results in pure transverse electric waves. The TEg,; fields in region

one are given by

EL = By, Jo(hy,0 )i’ (3.17a)
H, = “’k' o g o) (3.17b)
Bar‘ W e (3.17¢)

and in region two by

3 — Dty Kylikape)e (3.180)
Dz%":-' K (it p) (3.18b)

H, = ,.g D Ko™ (3.18¢)
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Along the dielectric-air interface, p=a, the tangential components from region one to region two

must be continuous. These two boundary conditions are stated in by Eq. 3.19a and 3.19b.

1) Ej(p=a)= E}(p=a) '  (3.19a)

2) Hy(p=a)= Hi(p=a) (3.19b)

Dividing (3.19b) by (3.19a) resuits in

klplo(klp‘) + f‘szo(i“zp“) =0
hlk,e) K (it,0)

or

by, Jo(ky ) KoGhypa) + ik Ko (ky,0) Ty a) = 0. (3.20)

It should be noted that Eq. 3.20 is a special case of the eigensystem (3.8). If the matrix
approach is used, setting n=0 would result in two possible solutions corresponding to TE,, and
TM,,- Satisfying Eq. 3.20 is an infinite set of eigenvalues k,mwith the subscript m taking on

values of 1 to infinity. The corresponding k”o components can be found from
m

bioom = J(Wfﬂota - ".zo'n) (3.21a)

and
boom = \I(wfﬂo ok ) (3.21b)

From this point, only the first solution, m=1, will be considered and the subscript m=1 will
be implicit. The development proceeds by matching field components at the end of the
resonator shown in Fig. 3.6. At interface, z=¥, the tangential components of region one must
equal the tangential components of region four. The fields in region one are composed of a
forward and reflected traveling waves. The reflected waves are given by substituting k= -k

into equation 3.17. In region four it is assumed that the fields have the same &, component as
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the fields in region one. This assumption in effect ignores the fringe fields, depicted in Fig. 3.6,
of the resonator. The error associated with this assumption will be small if the fringe area is
small compared to the total surface area of the resonator end and the evanescent fields decay
rapidly in the 3 direction. It follows that if &, =k, in region four, the propagation constant &,,

is obtained from

b= - \l“’o!“o% - k!lp (3.22)

The negative imaginary root is chosen to give decay as 1 goes to infinity. The boundary

condition for the TEy, mode at the end interface is given by

1) B:+(l=g) + E;(::é) = E‘;(;:i) (3.23s)
and

k) + HEG=R) = HG=Y). (3.23b)

The corresponding reflection coefficient T, is defined at 3 = 12‘ as

E  -H
Pu""E‘% =;$ - (3.24)

1 1

Using 3 = 0 as a phase reference Eq. 3.23 can be rewritten using Eq. 3.24 which yields

EL*(14T10) = By (3.288)
and

Hi*(1-Tyy) = Hy : (3.28b)

Using :=% as the phase reference, the field components are

i AT AN RN AR 1 Y e et
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EY* =Bk Jo(k, p) %) (3.26a)

By = By Lyt 0) () (3.26b)

HIY = Bl;%!f,,(k ) (h(+3) (3.26¢)
and

Hi = B, uo‘;‘:'f (k1,p) () (3.26d)

The boundary conditions (3.25a) can be rewritten as
Bklpfo(t,pp)(l +Ty,)= B,klp/o(t,pp)
B(1+Ty,)= B, (3.27)

Boundary condition 3.25b can be rewritten as

“"“ B2 Fy(hy,0) (1-Ty,) = By “’ b = Joltyp)

Dividing 3.27 by 3.28 yields

3 1+ _
E(1-T ) by

-k
Ty = H (TEy,) (3.29)

The reflection coefficient for a single dominant TMg, can be derived using Eq. 3.4 and
setting n, B and D equal to zero. Proceeding in similar manner, as for the reflection coefficient

for transverse electric, the transverse magnetic reflection coefficient is

—
Iy =‘$:-1_éz (TMy,) . (3.30)
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Having derived the complex reflection coefficient allows the algorithm developed in Section
2.6 to be implemented and yields the complex resonant frequency. Shown below is the result of
the gain/phase criterion agrees with Itoh's method [4]. The resonator has a dielectric constant

e, =40 - j0.04 (loss tangent 0.001), & radius of 0.63 cm and a height L of 0.51 cm.

mode method k S (a+jw,) Ha

TEqu PMC 615.7 2,737,800 + j2x - 5.476x10°
TEqy Itoh 354672 - j0.363  -2,200,000 + j2x - 4.375x10°
TEon Phase/Gain 354670 - 0351 2,200,000 + j2x - 4.378x10°

As shown in this section, computing the complex resonant frequency for the dielectric
resonator mode TEy, can be done using Gain/Phase criterion. Confidence and validity of the
Gain/Phase method is given by comcurrence with Itoh's method, which is theoretically
equivalent. In the next section, attention is turned to the problem of computing the resonant

frequency for hybrid modes.

3.3 Hybrid Resonator

As mentioned in Section 3.1 the lowest order mode for a cylindrical dielectric waveguide
is the hybrid HEM,, mode. Other nomenclature used to describe the lowest order mode is HE,,
which denotes that the mode is dominantly transverse electric. In this section, the problems
associated with solving for the complex reflection coefficient for hybrid modes are outlined.
Several approaches addressing these problems are presented. The problem for this specific
resonator is resolved by applying the insight gained in the development of the infinite dielectric

waveguide in Section 3.1 to the dielectric resonator.
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The task of formulating a closed-form solution for the reflection coefficient, as derived
for the TE and TM cases, will prove to be formidable. In.fact, it will be shown that using a.
mode-matching technique, as employed for the TE and TM cases, will lead to a numeric
ambiguity of four equations and three unknowns. Several approaches are considered to resolve
this problem. The final approach will draw from information obtained in the study of the
infinite dielectric waveguide in Section 3.1, and the field distribution unique to the physical
dimensions and material parameters of the experiment under study.

The derivation begins by matching the forward and reflected waves of region one (Fig.

3.7) to the fields of region four. The boundary condition equalities may be written as

E;* + B = E) (3.31a)
Eyt + E5 = E} (3.315)
H*+H = H (3.31¢)
HYY + Hy = B} (3.31d)

As in Section 3.2, the fringe fields are ignored and a tightly bounded field configuration is

assumed. The propagation constant in region four is

ke, = ufuoco—kl . {3.32)

Using the electromagnetic fields of Eq. 3.4 and noting that the reflected waves have propagation

constant -k,, the boundary conditions may be rewritten as
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-jk X -
‘ph ko) + BL: Julky,p))(e hi 4 ry, e’k'%) =
h L
(A4 J'(k,,,p)+ B‘ p n(t,Pp))e (3.3%)
.Jnk 'L ". L
(A“’ozdp hutkip) + Bkl» (k'lpp))(c P+, ¢ 17 =

J" 43 )‘ 'jkil%
(Asaggp fathipp) + Beky Sy 0)) ¢ (3.33b)

: -k, k gk L TR
(A2 Ik + Bt b pipe™E -1y, 859 =
(At%‘ln(tlpﬂ)‘*‘ By wp o ALY, ))C “5 _ (3.33¢)
and

L L
('Atlp’n(klpp)". Bu-"—‘—'% Jn(klpp))(ej 2 _ r“ ck‘2) =

-k,
(-Agky, Sk 0) + B, ‘p J,(k,pp))e i

_ o

(3.33d)

Using the numeric methods developed in Section 3.1, the coefficients A, B, C, and D can
be found relative to D for the forward and reflected waves. Knowing the propagation constant
k,, and the four coefficients, A, B, C and D leaves the four equations with the three unknowns

T4 A, B, Rearranging equation 3.33 such that the unknowns are on the left of the equality

leaves

L k
~Ty, (At “’k’ T(ky,0) + BL ,(k,Pp))ek‘2+ Ay (G b Lk p )" "5)

-1k, £ ": n sk
+ B, (,, Jkyp)e ")—(A 5 (k,pp)+9L Ikp))e "2 (3.34a)

4 127 -jnk sk
~ Ty (Ageegl fathye) + Bl Bk 0)) &%+ A, (e Ik 0)e ! !-‘)



1“4

b y y
+By(hy, Atky0)e” "} - “«%’:’5 Talhipp) + Bhy oy gp))e a
. | "
T4 (Ap Jutky ) + B—“p‘ﬁ Rky,e)) cJk'*) + Ad‘-}'ln(khp)ej "g)

]pll

Jk .
+ B (oo "’ b f(t,pp))e’ "5)= (A7 Ik p)+ B f(klpp))c kg

and

gk, K
Fra(-Aky, ok 0) + o p Lakyp0)) ‘t‘g) + ‘4("1p’.(*|pﬂ)¢1 “2)

Jh¥

-jnk 81
+B«7];[E.% l‘(tlpp))c ug —(Aklp);(l:lpp)+ u T J(klpp))e 3,

Each of the constants is assigned a function designator to indicate the position such as

g,

hale) = (Agr "’ (l:,,p)+a%'1_(k,,p))e’*‘2

This allows for 3.34 to be written in the matrix form

fn(l’) ’n(P) /x:)(P) 91(P)
FH
fn(ﬂ) In(P) hs (v) QQ(P)
Ay =
h (») ’sz(P) fn(P) 9 (r)
Bf!
fale) fia(p) fi3(p) 9(r)
L. J = -~ L -

which is in the form of

Z(p) w= G(p).

(3.34b)

(3.34¢)

(3.34d)

(3.35)

(3.36)
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Several problems must be addressed. First, the problem is over specified by baving one
more equation than unknown. Second, the 4x3 system is a function of p. A decision must be
made where at the resonator ends to match the fields. The restrictions of the choice are 0 <p
< a, where p is the variable that must be chosen and a is the radius of the resonator. One
approach is to rank the four boundary equations (3.31) in order of their importance and the least
important equation could be "thrown out”. The information obtained from the infinite dielectric
waveguide could be used to make a judicious decision. A second approach using all four
equations employs a more elegant method of a weighted integration over the radius.

In this method the first step is to forward multiply the system of (3.36) by its own

transpose. This step may be written as

Z(p) 2(0) = 2(p) G(p). (3.37)

As a result of the multiplication the 4x3 matrix Z(p) of (3.36) becomes a 3x3 system (3.37).
Next, to resolve the problem of which point p to pick along the radius, the equation may be

integrated along p leaving

w12 6) 206wl 4 = [cwter20)- 6t0) 4 (3.38)

The function w(p) is a weighting factor that is chosen to facilitate the integration. A judicious
choice of w(p) could yield a reasonable closed form solution of (3.38). More realistically, numeric
integration techniques would be applied to solve for the vector w. Integrating and realizing a
solution is beyond the scope of this work.

An alternate approach uses the insight gained from the earlier study of the infinite
dielectric waveguide of Section 3.1. Fig. 3.3 shows that the transverse electric field components
of the HEM,, dominate the components in the direction of propagation. Thus, in this approach

the calculation of the complex reflection coefficient will be done by assuming HEM,_ . boundary
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conditions along the resonator, p = a, and TE g boundary conditions at the resonators ends.

The reflection coefficient for the TE case derived in Section 3.2 is

k- &
[ M 1
Fy = E+ L, , (3.39)
Implementing the algorithm developed in Chapter 2 using Eq. 3.39 yields Figure 3.8. The graphs
show the first two resonant frequencies of HEM,,. The first two resonant frequencies are

designated f,;, and {5 . ‘The properties and dimensions of the dielectric resonator are

¢, = 40 - j0.04

6=063 cm
and

L =051 cm,

yielding the complex resonant frequency
- T, 9
=.1.2-107 +j2n-3.535 . 10° (HEM,,),

field parameters

fryyy = 3:54 Ghs

ky = 74.15 + j0.0§ m™}

ky, = 344.15 + j0.044 m!

by, = -0.03 - 309.86 m!

ik, = 318.6- j0.02 m’!

by, = -0.036+j336.07 m™!
and

Ty =-5.42 102~ jo.9977.

The second order resonant frequency fl.“2 is
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212107 +j2%-6.44-10° (HEM,,).

From Fig. 3.9a-d it is evident that a percentage of the fields are external to the
dielectric. These evanescent fields in free space represent stored energy. From examination of
Fig. 3.9, it can be determined that the external fields approach zero as p approaches 2 cm. Fig.
3.9d displays how the fields decay at the resonators ends for a resonator in free space, suggesting
the importance of the external fields is of paramount importance to the experiment under study.
External fields must be understood in order to couple energy effectively into the system from the
. probes, not perturb the experiment with the experimental support structures, and perturb the
fields in a repeatable way with the different conductors. Section 3.4 exams the effect of bringing
a perfect cond_vuct.or within close proximity to the resonators end. From Fig. 3.9d it can be seen

that close proximity is within 0.5 cm.
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3.4 Dielectric in the Presence of a Perfect Conductor

This section focuses on the dielectric resonator in the presence of a perfect ground plate
as depicted in Figure 3.10a. It is the goal of this section to derive a method of computing the
complex resonant frequency as a function of the distance between the dielectric and the perfect
conductor. The distance between dielectric and conductor will be referred to as A3. Before
deriving an expression for the reflection coefficient, it is useful to anticipate the results that the

derivation will yield

1) as Az—oo [, =T}y (Fyy- free space resonator)

and

2) as az—0 [y | =1 (perfect conductor pressed against dielectric).

The first statement indicates that when the perfect ground-plate is placed infinitely far from the
dielectric, the reflection coefficient I';4, becomes that of free space and yields the same resonant
frequencies as those in Section 3.3. The second statement describes perfect reflection as the
lossless ground-plate is pressed against the dielectric resonator. In the second case the dielectric
pressed against the conductor should yield the same resonant frequency with the same transverse
field distribution as a dielectric in free space with a length 2L (Fig. 3.10b). That resonant
frequency for the free space resonant dielectric with length 2L will be the hybrid mode HEM,,,.

The derivation for the reflection coefficient begins by considering the electric potential in

region 4
W= Jo(ky,p)(A cou(l:“(u-gimz )) + B, n'n(l"(ﬂ-i+hz )l (3.40)

Once again the fringe fields are ignored and it is assumed that the 1,’s are equal in regions one

and four. Thus k,, can be given by
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A )
by = +\Woloto ~'tlp : (3.41)

The positive root is chosen to give decay in the -3 direction. The ¢ component of the electric

field is given by
E‘: = %, ¥ = kmd,(klpp)[A‘ 600(1“(14'%+A1 )) + B, n'n(k"(u-iﬁu ).
At the air-conductor interface, 3= — ( !2'-+Az ),

5‘; = k‘p):,(klpp){A‘ cos(ky,(0)) + By sin(k,(0))] =0
or

Ag=0.

Using this result, the potential ¥$, and Eq. 3.3, the TE, fields for region four are given by

B = By by, Jo(ky,p) sin(ky,(s+5+81 ) (3.42)
k
H, = By Juh;: R ACWY co'("..(h‘— +az ) (3.42b)
w=82 B ' +k
: = By oz, o(ky,0) sin(k, (2 §1a: ). (3.42¢)

Using 2 = '-;‘ as a phase reference, the H,'s and Ey’s in region one at 1 = '-12‘ are

E} = B b, Jy(k,,0) (3.43a) Et =T\ (B b, Jo(ky ) (3.43b)
Hy = “’" = Jy(kp) (3430) H* =T\ B ;‘—k‘ To(ky,0) - (3.43d)

where the reflection coefficient is defined as
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- Ey -H)
=t = - (3.44
14 E£+ H:* | (3.44)

At the air-dielectric interface, 3 = '—%, the boundary conditions are

1- _
By + By = Ej (3.45a)
and
1 - _
HY + H = H,. (3.45b)

Substituting (3.43) , (3.44) and (3.42) and into the boundary equations yields

B (T, +1) =B, sin(k, Az) (3.46)
and
Bk, (-Dyy+ 1) =-jBky, cos(ky,a2) (3.47)

Dividing (3.46) by (3.47) and solving for the reflection coefficient gives

_ ktan(k, A2) - gk,
P = k lan(:“Az) +jl':, ’ (348)

As Az approaches zero, the reflection coefficient becomes
k
a1—0 - ik,

Providing that Eq. 3.41 yields an imaginary &, as the perfect conductor is moved an infinite

distance from the dielectric the reflection coefficient is

. L(j) + jky k- ¢&
im = —!7—————! = J—T-“ .
ar—oo M7 K(4) - by, R+l
As Az—oo the reflection coefficient becomes identical to that of the free space resonator in
section 3.2. Having solved for T';, in terms of Az allows the plotting of complex resonant
frequency of the first two HEM, modes vs. Az as shown in Fig. 3.11 and Fig. 4.12 respectively.
In the final stage of development Section 3.5 considers the dielectric resonator in the

presence of a lossy conductor.
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3.5 Dvielectric in the Presence of a Lossy Conductor

The development in this last section is the essence of the thesis: the post dielectric
resonator operating in the presence of a lossy conductor. This section will develop and
implement the mathematical tools that map the change of the resonant frequency due to the
change in the conductivity of the conductor. The objective requires the derivation of an
equivalent reflection coefficient that incorporates the air gap and the lossy comductor (Fig.
3.13a). To derive an expression for I‘.q, transmission line theory is employed. The equivalent
transmission line problem is shown in Fig. 3.13b. The voltage source is terminated into a
transmission line of characteristic impedance 2z, and length o Section one of the transmission
line terminates into a line with characteristic impedance z at length &, which in turn is
terminated into load Z;

To formulate a solution for the equivalent reflection coefficient, I‘.q, multiple reflections

must be accounted for. The two reflection coefficients are

T, — reflection from the dielectric-air boundary

and

Ty — reflection form the air-lossy conductor boundary.

First, it should be noted, Ty, and T, are functions of a single interface. For example,
Ty developed in Section 3.4, is unique and specific to the dielectric-air interface. Second, I'g,
is unique and specific to the air-conductor interface. To further complicate the problem there
are an infinite number of reflections in the air gap, or in Section 2 of the analogous transmission
line. The equivalent reflection coefficient must take in to account each of the reflections
mentioned above.

Field theory can solve the problem by using an infinite series to solve for the reflections

of the air gap. A more convenient approach employs a technique used in control theory.
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Treating the air gap as a feedback mechanism, the equivalent reflection coefficient may be

written as
-j2k, Az
14T, )(1 + T Ty 0 0
Feq =T ! 1l uL%T (3.49)
<128k, O
1+ Fl‘ru‘ 4
Which reduces 3.50 to
Pl“”rgs C.Jzk"A.

Teq = R (3.50)
The reflection coefficient I';,, developed in Section 3.3 is

r.=h- k

WERTR (3.51)

The reflection coefficient for the air-conductor boundary is

b, %

— (4
Py = 4’-—1";“ i, (3.52)

where k" is

kyg = + ,Iwipoco - kilp.

Care must be taken in the choosing of the proper root. The negative sign is chosen to give decay
to fields propagating in the positive z direction.

As in Section 3.2, the fringe fields are ignored and tightly bounded ﬁ_eldn are assumed. It
will also be assumed that the rho components of the electric field in the air, lossy conductor, and

dielectric are equal. The lossy conductor is assumed to be a good conductor havinj the
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properties (14)

r‘:z > 1000

and

W pd | [T a0
k“':\J°2° +,\J o (3.53)

Using the newly developed propagation constant and equivalent reflection coefficient, the
complex resonant frequency can be calculated for the conductor at different conductivities. Fig.

3.14 and 3.15 are the result of using the following parameters

e, =40 -j0.04

4:r=02cm

a=0.635cm
and

h=0.51 cm.
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Chapter 4
Summary and Conclusions

By deriving the electro-magnetic fields in and around the dielectric and establishing the
linkage between the complex resonant frequency and the parameters associated with the
dielectric resonator, a thorough understanding of NASA's experiment has been achieved. The
derivation and illustration of the manner in which the fields propagate in the specific dielectric
under study; the strength of the evanescent fields; the effect of the conductor on the resonant
frequency; and how conductivity of the conductor effects the Q of the system, have given useful

insight. to the experiment.

The electro-magnetic fields were determined by enforcing boundary conditions of the
resonator system. Section 3.3 showed that the fields at the resonators end’s are predominately
TE for the dielectric under consideration. This characteristic allowed for the reflection
coefficient for the TE mode to be incorporated into the determination of the complex resonant
frequency of the hybrid mode HEM,,;. This determination of the relative field strength of each
component has provided an understanding of how the fields propagate and are distributed in and
around the dielectric. Section 3.3 also showed that at the dielectric-air interface the angle of

incidence was approximately 75°, as measured from the normal.

Through this analysis, two important details regarding the design and application of the
NASA experiment were revealed from the knowledge gained by deriving the evanescent fields.
First, the strength of the radial evanescent fields (pg 50) determines the distance the support
structure must be from the dielectric such that energy is not coupled to the support structure.

Second, and more important to this experiment, an understanding of the strength and profile of
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the evanescent fields at the dielectric ends was created. The profile of the evanescent fields at
the resonators ends determines the distance the conductor must be from the dielectric in order

to couple energy to the conductor.

Section 3.4 showed that placement of the conductor with respect to the dielectric had a
dramatic effect on resonant frequency. This implied that the experimental structure must have
had the ability to place different conductors at the same distance in a repeatable and accurate

manner.

The last section yields insight into the goal of the NASA experiment, relating
conductivity of the mesh conductor to the Q of the resonant system. Fig. 3.15 and 3.16 showed a
weak relationship between the conductivity and the complex resonant frequency, suggesting only
marginal usefulness of this measurement approach. ‘In addition, the incidence angle on the

conductor is not con.ducive to the desired near normal incident measurement.

At this point, the work remaining is an iterative process of going from the model to
experimental measurements, and then back to the model. In addition, accurate measurements of
the dielectric constant, dimensions of the dielectric, and accurate measurement of air gap could
be incorporated into the simulation to yield more accurate simulation results. To further refine
both the simulation and to redesign the experiment, the dimension of the dielectric could be
chosen to cause field propagation to be more planer. This would yield stronger evanescent fields
and more coupling of energy to the conductor. This would alse make the approximation of the
TE boundary conditions at the dielectrics end’s more accurate resulting in a better simulation.

Calibration of the model should be done using conductors with known conductivity such as

copper.
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APPENDIX A

DERIVATION OF TE COMPONENTS IN TERMS OF H,

The following derivation provides the components E,and H p in terms of H, for the

TEq; mode in the dielectric resonator of Fig. 1. The derivation begins with Maxwell’s curl

equations.
VxE= -jwuH (A.1)
Vx H =jweE (A2)

If (A.1) and (A.2) are expanded into cylindrical components, we obtain

_ oE, OF ) oH, OH
‘]upﬂpzi-a—j-a—: (A.3a) jchp=% 6¢‘—8—:‘ (A.3b)
OE, »E ) oH, oaH
- jwpH 4 = a—:" - 7;' (A.3¢) jweE, = —67‘-’ - ‘a‘;’ (A.3d)
oF oH
- jwuH, = %(%@E‘) - 3;") (A.3¢) jweE, = %(%(pﬁ!‘) - 33'?) (A.3f)
For the TEg, mode, the following components are zero:
E,=0 E,=0 Hy=0
Eqs. (A.3) become
ok oH
jwuH , = -3—‘! (A.4a) 0=} (A.4b)
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. oH, 6 oaH
0=0 (A .Ac) jU(E¢= —a—zﬂ—-—gb-'- (A.4d)
OH
- jonH, =} a%(”Eé) (A.de) 0=5 3¢ (A.4f)

Eqs (A.4b) and (A.4f) imply that f, and H, are not functions of ¢. Setting the ¢ variation to a

constant, Eqs. (A.4) simplify to

» ok,
jwpH , = B (A.53)
- jupH, =} g;(p%) (A.5b)
and
0H, oH
i =P _"_:
jweEy = —- 3p (A.5¢)
Taking the derivative of (A .5a) with respect to : and substituting into (A.5c) gives
3 & E, =i oH, A6
(w en+az,) ¢ = o 55 (A8)

Each region must be considered separately in solving the form for (A.8). The resultant

forms may then be combined to complete the problem solution. For regions, 1 and 2 of Fig. 1 we

have

-01: -8

612 : (A.-’d)

in region 3 we have
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and in region 4 we have

g—;:(’.

H

(A. M)

(A.Tc)

We now develop the fields in each region for the TE,; mode, beginning with region 1.

Let us define the magnetic field intensity as
H: = Ay sin k(2 - 2,) Jo(Ry,0)

for an arbitrary 3,, where £, is defined as

= 3
b, = \luielpl -k

From (A.6) and (A.7a), we may write
= jopy 20y k, si Jo(k
and from (A.5a)
1
1opY

H; = J—l_dlﬂ_l Bz k Ak con k(z-2,) J;,(k,pp) :

In region 2 we define

H3 = Ay sin k(2 - 2,) Koliky0)

(A.83)

(A.8b)

(A.8¢)

(A.9a)



where k,p is defined as

3
k= \lu§c2p2 -k .

As before we may write

By =l gy oin bz - 1) Ki(iky,0)

and

H3 = b, Agky con k(s - 2,) K(iky,0) -

In region 3 we define (d = L)

H = age D5 p),

where kap is defined as

As before we may write

B; = jupgAgky, ¢~ e -d) J:)(kapp)

and
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(A.9b)

(A.9¢)

(A.10a)

(A.10b)
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H) = - yAgky, e " D Jo(ky,0) - (A.10¢)

In the last region to be considered, region 4, we define

HY = A, sinh (2 + 1) Jo(k,0) (A.11a)

where £, » is defined as

2

Again we write

EY = jwn Agkysinh ((z + 1) Jo(ky,0) (A.11b)

and

HY = (Aky, cosh (2 + 1) Ty, 0) - (A.11c)

For simplicity of solution, a full modal expansion will not be done, but rather the fields
in regions 5 and 6 will be neglected and continuity across a boundary will be applied as though

the boundary were infinite. In other words, we set

kap = k‘p = klp'

We have already imposed the equality condition on &, in regions 1 and 2.

With these approximations, Eqs. (8a) through (11c) become the following:



70

Region 1:

H: = A1 sin k‘(l - 30) Jo(hpp) ’

. BH, jumA ’
E; = jwihy '5# = —_}llp—l sin kz(‘ - :0) Jo(k‘Pp)
and
OB, kA
- $_
Hy = 3 = 1, o b 1) Jalht)
Region 2:
HY = Ay sin k(s - 1) Kolikap) |
Adwiia A 5 Iy
£} = TF 22 sin 1(a - 1) Koy 0)
p
and
kLA ' (i
H: = —k.,—2 cos k,(z - 2,) Kg(iky,0) -
P
Region 3:
B = Ay e k)
jwia A - - ’
o =Li.“3_i e YD 3k 0)
I4
and
= - YA -9
p"_h,e olh?)
Region 4:

H*Y = A, sinh ((z + 1) Jo(ky,0)

(A.8a)

(A.8b)

(A.8¢)

(A.9a)

(A.9b)

(A.9¢c)

(A.10a)

(A.10b)

(A.10c)

(A.11a)



£ = jiff,,i‘ sinh ((z + 1) J)(k,,0)

and

A
H: = (II-:— cosh {(z + 1) Jg(ky,0) -

where

_,Ii 3
klp- uclpl—k,,

— 2 2
‘u"\J“ L
7=\J*1p"“"sl‘av

and

(= \Ihilp - wic‘p‘ .
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(A.11b)

(A-11¢)

(A12a)

(A.12b)

(A.12¢)

(A.12d)
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APPENDIX B

DERIVATION OF EIGENVALUE EQUATIONS OF SECTION
2.2

The boundary conditions for the resonator of section 2.2 are

Yooy — (=

1) H,(p=0a) = H(p=a)

2) Ejp=0) = E}(p=0)

3) H(s=0) = H(:=0)
p e

1) Ej(2=0) = Ey(:=0)
Yol d\ — 3 ,—

5) Hp(z—d) = Hp(t—d)

8) Elz=d) = E}(:=d).
¢ ¢

Applying each of these boundary conditions to the fields of App. A, we obtain the following

equations:

Ay Jo(kyp0) = Ay Ko(jk,pa) (B.1a)

T2
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Ay by, Jo(kyg0) = A, by, Ko(jky 0) (B.1b)
Ak, cos k1, = A (cosh (t (B.1¢)
- Ay sin k2, = A, sinh (i (B.1d)
Ak cosk(d-z2)=-Ayy (B.1le)
Aysink(d-2) =4y (B.1f)

Since the eigenvalues (in other words, §, and'y) are desired in order to determine the
resonant frequency, the amplitude coefficients may be eliminated from the equations to provide
the simple eigen equations which must be solved. Dividing (B.1b) by (B.1a), and recalling the
relationships of £, and &, to k, in (A.12), we obtain an equation for £, in terms of the frequency

a8

ku Ja(klpa) _ E\P Ka(jkgpa)

Jolk1,8) —  Koliky,0) (B.2)

An additional equation is required if we are to determine either the resonant frequency
or the k,, We may obtain such an equation by deleting A and A, from the boundary equations

also. Dividing (B.1d) by (B.1c) we obtain

~tan ks, = % tanh (! (B.3)



T4

and dividing (B.1f) by (B.le) we obtain
~tan k(d-1) =7 (BA4)

The last two equations have introduced the additional variables of 3, and v. The variable vy is

defined by (A.12¢). The unknown s, may be eliminated by combining (B.3) and (B.4).

To eliminate 1, we first expand the tangent of (B.4) using a standard trigonometric

identity to obtain

_ tan (kd) —tan (k2 ) &
tan ,(d - 2,) = {3 (k,d) tan (kfxo) ="y

(BS5)

or

k
£ +tan (t d k
tan &z, = Y (t,4) =—~(-5t.anh(l. (B.8)

e T
1- ;-15 tan (&, d)
Eq. (B.6) may be rearranged to give

z—-i- } coth (t

tan (¢ d) = +———
' 1—‘—:-§cot.h(t

or

kd=tan" ‘(g—) +tan” l(é- coth (t) . (B.7)

Eq. (B.2) and (B.7) form the two equations to be solved simultaneously for the

eigenvalue of the system, &, and thus the resonant frequency.
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